Cardiac Diagnosis Support By Global Air Ambulance Services In Allahabad With Medical Faculty

We serve the Air Relocation Services that flies local and distant aircraft, across the counties in the world

Global Air Evacuation Services is expanding its services to fly patients over 5 counties. Our Charted Aircraft provide a rapid response to trauma and medical emergencies over several cities and countries covering many of India’s major road networks.

With an average response between them, our aircraft attend on average. Our Critical Care Cars then work throughout the night attending medical emergencies that occur within these regions creating a service that operates 24/7, 365 days a year.

If you’re local, you may well have seen us in the skies above you. What many people don’t realize when seeing our air ambulances or visiting our office is that we’re a least chargeable Air Ambulance Service provider, so we’re only able to continue with our services because of generous evacuation.

Here we are the best support of the Air Ambulance to shift the patients to the required and needed designation with the comfortable support of the medical equips to avail the treatments along the specialist faculty of the MD Doctors and the Emergency Medical Technicians to observe the patient all along the process of the medical tourism only with Global Air Ambulance Services.

We are here to facilitate all the citizens of India with the emergency rehabilitation support via airways, railways, and also with the Roadways ambulance services to shift the critical patients with the setup of the medical equipment’s and the medical faculty to treat the patients with the diagnosis all along the evacuation process.

The Global Air Ambulance in Allahabad is always at the top of the emergency services like medical team (a large and smart channel of MD doctors panel, a group of paramedical technicians, nursing staff and medical dispatches; they all are always ready) emergency Equipment such as ventilators, cardiac monitor, suction machine, infusion pump, nebulizer machine, oxygen cylinder, speed maker, defied Radiator, all basic and advance support), help and transfer serious patients round-the-clock. (Always in need of necessary updates and renewal costs which is very economical and reliable); Services (Patient Transfer Ground-Rail-Ground, Ground-Air-Ground, 24/7 Hours), Experience (Approximate Most Required) and provides the safe, experienced, responsible and quick emergency evacuation services necessary for patients.

We are also available with the Air Ambulance in Bangalore so the citizens of Bangalore could meet the needs of the emergency facility. One of the Super Specialty Emergency Service Providers, which will give them personal ambulance services, Commercial Airlines Stretcher Services (Air India, Jet Airways, Indigo, Go Air, Air Asia, Other), Train Medical Preservation Services and Road Ambulance (ACLS, BLS, BLS ) Offers and QEV) Expert, experienced and responsible medical care team to move serious people in less time under the unit.

The Present and Future of Radiotherapy

The radiotherapy market is growing due to several factors, such as an increase in the number of new cancer cases and technological advancement in the hardware and software used in radiotherapy. The current international markets are underequipped to address new cases of cancer. In low- and middle-income countries, only 10% of the population has access to radiotherapy. Therefore, there exists a wide gap between the demand and the installed base of equipment, which offers a huge opportunity for the companies to grow in the radiotherapy market. Expansion of the radiotherapy market can be both lifesaving and profitable.

Effective planning for the treatment

It is necessary, and continuous technological developments are taking place to minimize the exposure to radiation of healthy tissue, in order to avoid any side effect. This goal is a driving force of R&D for radiotherapy. Software plays an increasingly significant role in cancer care. Population growth and increased life expectancy are adding to the incidences of cancer. The software & services segment includes software, which is used for treatment planning, analysis, and services, which are needed for the maintenance and efficient use of radiotherapy devices. The software & services segment of the companies are expected to grow, as software products help improve physician engagement and clinical knowledge-sharing, patient care management, and the management of cancer clinics, radiotherapy centers, and oncology practices for better performance. Companies like Varian are continuously increasing their software portfolio. Software plays an increasingly significant role in cancer care. At the same time, healthcare systems are subject to harsh budgetary constraints in nearly every country. As a result, healthcare providers face the challenge of achieving more while using fewer resources. To achieve this goal, hospitals have a strong need for software platforms that make radiotherapy treatment cost-effective. The development of effective software will improve the delivery of advanced radiotherapy in the future.

Introduction of new technology
Technology is another salient feature. Radiation therapy remains a significant modality for cancer treatment, which is the primary driving factor for the designing of new techniques to improve the survival rate of cancer patients. New technologies, like proton beam therapy, are available in developed countries like the United States, Germany, and United Kingdom, due to well-established reimbursement policies. Proton therapy can be used on tissues that are highly sensitive, like brain, spine, and eye tumors. It is more accurate, as compared to other X-ray radiation therapies.

Advancement in the technology is also helping to execute the planning of the radiation therapy.

Technological advancement in existing technologies, such as CT imaging, is making imaging more accurate and consistent. This can give a better representation of a tumor and help in better planning. Already-existing technology, such as IMRT, SBRT, IGRT, conformal 3D, VMAT, and others that are used for radiation therapy treatment is undergoing various advancements. For example, Varian is developing a software, which can be used to develop better planning tools, in which statistical models can be used to calculate the quality of an IMRT treatment for a patient. This is expected to increase the usage of IMRT for treating cancer. IGRT is the type of radiotherapy. Research is more focused on IGRT, in order to prove its fewer side-effects. IGRT may include electronic portal imaging, fluoroscopy, ultrasound, CT scan reconstruction, and respiratory gating technology. SBRT is also growing as an option for treating cancer. SBRT is used to escalate the dose to the targeted tumor, which can increase local control while limiting the dose to nearby critical structures and normal tissues. This will cause minimum damage to the surrounding tissues and hence, will experience strong growth in the forecast period.

The Life of Mammogram Inventor Stafford L Warren

Stafford L. Warren was one of the most significant contributors to radiology during his lifetime. He not only was the first doctor to perform a mammogram, but was also had a hand in turning UCLA into one of the most prestigious medical universities in the country, was a special assistant on mental disabilities to Presidents John F Kennedy and Lyndon B Johnson, and aided the U.S. government in testing of nuclear weapons before speaking out about the dangers of nuclear fallout from weapons testing, which were controversial at the time. However, his strong opinions would eventually be considered, leading up to the Partial Nuclear Test Ban Treaty in 1963.

Born in New Mexico in 1896, Stafford L. Warren attended the University of California, Berkeley, and graduated with his Bachelor of Arts degree in 1918. Heading to the University of California, San Francisco, he graduated with his Doctor of Medicine degree in 1922 and later did post-doctoral work at John Hopkins School of Medicine and Harvard University.

Warren became an Assistant Professor of Medicine at the University of Rochester School of Medicine in 1926. Since the Department of Radiology was brand new at the time, Warren was one of the original group of medical professionals that Dean George Whipple chose to staff the school. By 1930, Warren was an Associate Professor of Medicine. He began to study the work of Albert Salomon, a sociologist from the University of Berlin who produced over 3,000 images of mastectomy specimens and extensively studied the many forms and stages of cancer in the breast. Since Salomon wasn’t keen to recognize the life saving aspects of his discoveries, Warren expanded on his research, using radiology to track changes in breast tissue and developing a stereoscopic technique in which the patient would lie on her side with one arm raised while being X-Rayed. This was a huge breakthrough for breast cancer detection, as it allowed diagnosis of breast cancer to be possible without surgery. Warren subsequently published “A Roentgenologic Study of the Breast” in 1930. Today Warren is cited as the inventor of the mammogram for his breast imaging technique. Each year mammograms are responsible to diagnosing millions of breast cancer cases, effectively saving the lives of women the world over.

Warren, having now tackled a major milestone in his career and developing a new life saving technique, then went on to take on a new project: overseeing the health and safety of thousands during the Manhattan Project. His new role meant being responsible for the safety aspects of the detonation of the Trinity nuclear test in Alamogordo, New Mexico on July 16, 1945. He later handled radiological safety when he led a team of surveyors to Japan, and to the Bikini Atoll in 1946, where more nuclear testing was done. Warren was in charge of assessing the radioactive contamination of the environment and atmosphere, which he was appalled by.

In response to this, in a piece for LIFE magazine in 1947 he wrote, “The development of atomic bombs has presented the world with a variety of formidable scientific, moral and political problems, nearly all of them still unsolved.” He went on to write an in depth analysis of the effects of the bombs, people and environment affected, the time length in which the effects of the bomb lasted, safety measures used during the Bikini expedition in which “a month passed before men could stay on some of the ships for more than an hour”, and “300 men of the safety section lived and worked in the contaminated area to protect some 42,000 other members of the Bikini expedition. Every group which entered the target area was accompanied by a safety monitor who determined how long it could stay.” The men were then bathed carefully when they returned, and if their Geiger counters indicated radioactive contamination they had to be bathed again. “Occasionally when a man had taken off his protective gloves in the ‘hot’ area, the safety section had to dissolve the outer layer of skin from their hands with acid.” Clothes and other materials found too contaminated were sunk into the ocean a mile below the surface, because there was literally “no other way to keep them permanently away from human beings.”

In the article, Warren concluded that atomic weapons can never be prepared for by anyone involved, and that “no defense would have been effective. The only defense against atomic bombs still lies outside the scope of science. It is the prevention of atomic war.”

Warren left his position in 1946, becoming the Chief of the Medical Section of the Atomic Energy Commission, which is a civilian agency that succeeded the Manhattan Project; and later he was awarded the Army Distinguished Service Medal and the Legion of Merit for his contributions to radioactive and atomic weapons safety.

In 1947, Warren was once again at the helm of a brand new medical university, this time UCLA, which had been voted on to establish a medical school for Southern California. He was appointed as the school’s first dean. In 1951 the first students, 28 in total, were enrolled, and there were 15 faculty members. By 1955, when the class graduated, there were 43 faculty members. The UCLA Medical Center officially opened in 1955, and Warren oversaw many milestones and achievements while there, including the addition of schools for Dentistry, Nursing, and Public Health.